Convenient Synthesis of 2,6-di-*tert*-Butyl-4-[5-(3-pyridyl)-4-oxapentyl]phenols and their *thia*-Analogues

Osvalds Pugovičs,^a Valerjans Kauss,^a Ivars Kalvinsh,^{*a} Markus R. Gold^b and Günther Quack^b

^aLatvian Institute of Organic Synthesis, 21 Aizkraukles St., Riga, LV1006, Latvia ^bMerz+Co., GmbH&Co., Frankfurt am Main, PO-box 111353, 60048 Frankfurt/Main, Germany

A convenient large scale procedure for the synthesis of Nicanartine {2,6-di-*tert*-butyl-4-[5-(3-pyridyl)-4-oxapentyl]-phenol}, an antiatherosclerotic compound has been developed, the synthetic route towards the thia-analogue as well as various branched-chain oxa- and thia-derivatives of the parent compound has also been investigated.

Searching for a drug which might address therapeutically some of the most important aspects of atherogenesis, Gold *et al.*¹ have synthesized *Nicanartine* {2,6-di-*tert*-butyl-4-[5-(3-pyridyl)-4-oxapentyl]phenol **1**, Mrz 3/124} demonstrating its potential use as antiatherosclerotic drug.

1 Mrz 3/124, Nicanartine

Here we report a convenient and general method for the synthesis of both *Nicanartine* 1 and the corresponding thiaanalogue 2 as well as a series of branched chain derivatives of both 1 and 2.

The key intermediates for preparation of pyridyl ethers 1 and 2 are 3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)propanols 3 (Scheme 1).

Reaction of corresponding 3 with mesyl chloride afforded mesylates 4a-j. Williamson's procedure² in DMSO led to the ethers 1a-f and 1i. Treatment of secondary mesylates 4g, h and 4j with 3-pyridylmethanol resulted in elimination

*To receive any correspondence.

Bu Bu OMs R^2 \mathbb{R}^2 Bu But 'nн ÒMs **5** $R^2 = H$ 7 R² = H 8 R² = Me 6 R² = Me $B^2 = H$ $R^2 = Me$ OН OH OH Bι Bu Βu But Ру 9 10 11

Scheme 2 Reactions of 2-(3,5-di-*tert*-butyl-4-hydroxybenzyl)propane-1,3-diols

products instead of ethers. On the other hand mesylates $4\mathbf{a}-\mathbf{j}$ in the reaction with 3-picolylmercaptan generated *in situ* from picolylthiouronium salt³ and NaOH gave the corresponding thioethers $2\mathbf{a}-\mathbf{j}$ (Table 1).

Meanwhile the Williamson's procedure was applied to 2-(3,5-*tert*-butyl-4-hydroxybenzyl)propane-1,3-diols **5** and **6** (Scheme 2).

Treatment of alcohols 5 and 6 with mesyl chloride, gave the corresponding bis-mesylates 7 and 8. However, condensation with 3-pyridylmethanol gave mixture of bis-ether 9 and unsaturated ether 10 if $R^2 = H$. Introduction of the methyl group ($R^2 = Me$) excluded elimination, and cyclobutane derivative 11 was the only isolated product.

We have to conclude that the Williamson's synthesis from corresponding mesylates and 3-pyridylmethanol is the most appropriate method for the preparation of *Nicanartine* and its analogues. Obviously, the phenolic OH group is sterically hindered by the bulky *o*-substituents, so the regioselectivity is ensured in this reaction and there is no need for protective groups. Secondary mesylates undergo elimination if treated with 3-pyridylmethanol, whereas application of a stronger nucleophile, 3-picolylmercaptan, provides corresponding thioethers.

Techniques used: ¹H NMR, HPLC on 4.6×250 mm Silasorb 600 column and 4.6×250 mm Silasorb SPH C18 column

J. Chem. Research (S), 1998, 430–431 J. Chem. Research (M), 1998, 1885–1894

J. CHEM. RESEARCH (S), 1998 431

Entry	R ¹	R ²	R ³	Mesylate			Ether			Thioether		
					Yield (%)	Mp/°C		Yield (%)	Mp/°C		Yield (%)	Mp/°C
1	Н	Н	Н	4a	83	116–117	1a	76	104–105	2a	75	59–60
2	Me	Н	Н	4b	53	72–73	1b	53	101–103	2b	70	105–106
3	Н	Me	Н	4c	87	59-60	1c	47	102–104	2c	63	63–64
4	Н	Et	Н	4d	80	oil	1d	_	_	2d	54	oil
5	н	Pr	Н	4e	94	oil	1e	62	99–101	2e	48	82–83
6	Н	Bu	Н	4f	88	oil	1f	43	71–72	2f	32	80–81
7	н	Н	Et	4g	86	oil	1g	_	_	2g	53	73–74
8	н	н	Pr	4ň	87	oil	1Ň			2ň	45	75–76
9	Me	Me	Н	4i	93	oil	1i	39	56–57	2i	50	oil
10	Me	Н	Pr	4j	93	oil	1j	—	_	2j	63	oil

Table 1 Syntheses of 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propylmethanesulfonates and corresponding ethers and thioethers

References: 8

Tables: 3 (yields, mps and ¹H NMR spectra of starting mesylates and target products)

Received, 16th January 1998; Accepted, 13th May 1998 Paper E/8/00452H

References cited in this synopsis

- 1 M. R. Gold, P. Jarglis, H. Junglas, J. H. Leimner, D. Peteri, G. Quack, J. Strohmeier and P. M. Wülfroth, PCT Int. Appl., WO 93 12,089 24.06.93 (Chem. Abstr., 1993, 119, P225836).
- 2 D. R. Benedict, T. A. Bianchi and L. A. Cate, Synthesis, 1979, 6,
- 428.
 3 Z. J. Vejde'lek and M. Protiva, *Collect. Czech. Chem. Commun.*, 1951, 16, 451.